Self-assembly of a novel alternant amphiphilic poly(OPE-alt-TEO) copolymer: from nanowires to twist fibrillar architectures with molecular dimensions.

نویسندگان

  • Pei Wang
  • Zhun Ma
  • Yan-Lian Yang
  • Qu-Li Fan
  • Xin-Fei Yu
  • Chen Wang
  • Wei Huang
  • Lian-Hui Wang
چکیده

A novel alternant amphiphilic polymer poly[1,4-bis(phenylethynyl)-2,5-bis(hexyloxy)benzene-alt-tetra(ethylene oxide)] was prepared. Atom force microscope (AFM) images showed that the molecular self-assembly morphologies changed from molecular nanowires to twist fibrillar architectures with the increase of the solution concentrations. Short and thin wires formed in dilute solution, while large bundles developed in relatively concentrated ones, shown by fluorescence microscope images. The photoluminescence (PL) spectra of the corresponding films indicate a self-assembly process of the polymers under slow solvents evaporation. Coplanar aggregation was confirmed through PL and photoluminescence excitation (PLE) spectra. Furthermore, the self-assembly process in polymer bulk was studied by wide-angle X-ray diffraction. To the best of our knowledge, it is the first time to reveal the change of the molecular morphologies with the altering concentration for the alternant amphiphilic conjugated polymers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supramolecular self-assembly of novel thermo-responsive double-hydrophilic and hydrophobic Y-shaped [MPEO-b-PEtOx-b-(PCL)2] terpolymers

Nonlinear amphiphilic block copolymer architectures with precisely controlled structures bring new challenges to biomedical materials research. The paper describes the straightforward synthesis of new “snake tongue“ Y-shaped terpolymers containing poly(ethylene oxide) (PEO), poly(2-ethyl-2-oxazoline) (PEtOx) and poly(3-caprolactone) (PCL) blocks into structure [AB(C)2] (herein referred to as [M...

متن کامل

Enhanced Photophysical Properties of Nanopatterned Titania Nanodots/Nanowires upon Hybridization with Silica via Block Copolymer Templated Sol-Gel Process

We fabricated titanium dioxide (TiO2)-silica (SiO2) nanocomposite structures with controlled morphology by a simple synthetic approach using cooperative sol-gel chemistry and block copolymer (BCP) self-assembly. Mixed TiO2-SiO2 sol-gel precursors were blended with amphiphilic poly(styrene-block-ethylene oxide) (PS-b-PEO) BCPs where the precursors were selectively incorporated into the hydrophil...

متن کامل

Conformational Analysis of Alternating Copolymers and Their Association into Nanoarchitectures

Our research focuses on the characterization of the association and the properties in aqueous solution of nanostructures, particularly on nanotubes composed of amphiphilic alternating copolymers. These copolymers constitute a pH sensitive hydrophilic group (maleic anhydride) alternating with a hydrophobic group. To investigate the role of the nature of the hydrophobic groups on the association,...

متن کامل

Invertible Polymers for the Stabilization of Nanoparticles

Novel amphiphilic polyesters with both hydrophilic and hydrophobic functionalities being alternately distributed along polymer backbones have been synthesized and characterized. The polyesters are soluble in organic and aqueous media and reveal the formation of inverse architectures whose behavior could be correlated to their chemical structure. This work offers a new approach to building up se...

متن کامل

Amphiphilic Block Copolymer Nano-micelles: Effect of Length Ratio of the Hydrophilic Block

Block copolymer nano-micelles are especially important in cancer treatment because of their fine dimensions. In this article, three systems of amphiphilic copolymers with similar lengths and different ratios of the hydrophobic and hydrophilic chains are studied using implicit-solvent coarse-grained molecular dynamics simulations. The factor fphil is defined as the ratio of the number...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 11 1  شماره 

صفحات  -

تاریخ انتشار 2009